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Abstract

The detection of gravitational wave signals of astrophysical origin is particularly challenging

because the signals are always contaminated by noise. Two of most prominent and efficient de-

tection techniques currently used in Virgo/LIGO search pipelines are matched filtering and χ2-

consistency testing. This paper investigated the performance of these two detection techniques in

event GW170814 as well as in the presence of both consistently distributed noise and transient

glitches. It was found that matched filtering performs best in the presence of perfect or close-

perfect Gaussian noise; it can also mistake glitches for real gravitational waves if certain types of

glitches are present. Additionally, it was found that χ2-consistency testing has little effects in cases

where matched filtering had previously been unsuccessful. Finally, it was shown that the use of

χ2-consistency testing is crucial to detecting and identifying gravitational waves in the presence of

Extremely Loud and Blip glitches.

I. INTRODUCTION

The existence of gravitational waves was first predicted by Albert Einstein in 1916 as

a direct result of his Theory of General Relativity. Since then, gravitational wave science

and detection have been a leading scientific field of interest for not just physicists, but

also astronomers, geologists, material scientists, and engineers. With the first confirmed

detection of gravitational waves from a binary black hole merger in 2015 (event GW150914),

the prospects of gravitational wave science and its applications to other fields have only

become brighter. As of July 2020, there exist five primary fully functioning gravitational

wave detectors – the LIGO Hanford Detector in Washington, the LIGO Livingston Detector

in Louisiana, the Virgo Observatory in Italy, the GEO600 detector in Germany and the

KAGRA detector in Japan.

The detection of gravitational waves, however, poses many challenges, for their signals are

extremely weak. Gravitational wave signals can be easily contaminated by noise, thereby

requiring a wide range of sophisticated mathematical and data analysis techniques to be

identified. This paper explores several complications in the detection of gravitational waves
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– specifically, it studies the detection of event GW170814 as well as the general performance

of matched filtering and χ2-consistency testing in different unfavorable noise conditions

present in the Virgo and LIGO gravitational wave detectors.

This paper uses real Virgo/LIGO data queried from the Gravitational Wave Open Sci-

ence Center (GWOSC). GWOSC is a collaborative effort between the LIGO Laboratory,

the LIGO Scientific Collaboration and the Virgo Collaboration to provide the public with

gravitational wave data from the two LIGO facilities (Hanford, WA and Livingston, LA)

as well the Virgo Observatory in Cascina, Italy. The structure of this paper is as follows.

Section II provides detailed background information necessary for the methods undertaken

in this paper. Specifically, sub-section II A discusses gravitational waves, their detection and

current detector technology while sub-section II B addresses data analysis details such as the

Fourier transform, noise characteristics, matched filtering and χ2-consistency testing. Sec-

tion III gives a detailed description of this paper’s methodology and the steps undertaken.

Section IV provides the paper’s results in addition to data analysis. Section V presents the

study’s conclusions and proposals for possible future research directions. Finally, section VI

gives a brief overall summary of this paper’s content. The source code in LaTeX for this

paper can be found on the Github repository here .

II. BACKGROUND

A. Gravitational waves and the Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO)

1. Gravitational waves and their detection

In 1915, Albert Einstein first published his theory of general relativity, describing space

and time as one four-dimensional concept called “space-time” [1], In this theory, he describes

the force of gravity not as an inherent property that a massive body possesses, but rather

as a byproduct of curved space-time. To put this more simply, we can say that a body with

mass warps space-time, thereby creating a gravitational field surrounding it, affecting other

bodies [2]. To understand this idea, we can make use of an analogy: suppose that the fabric

of space-time is represented by a rubber sheet, and that any object with mass on it warps

the surrounding area (FIG. 1), hence creating a gravitational field. It follows from Einstein’s
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FIG. 1. This figure shows a simplified analogy for Einstein’s idea of space-time – which cannot be

fully illustrated by a 2D picture. Adapted from [5].

Theory of Relativity that rapid changes in the curvature of space-time (specifically through

a changing quadrupole mass distribution) would produce ripples, called gravitational waves

(abbreviated as GW), that propagate outward at the speed of light [3]. On a astronomical

scale, sources of gravitational waves can be classified into three distinct classes [4]:

1. Burst Sources

Examples of burst sources include the final coalescence of compact binary star systems,

and asymmetric supernovae. The binary coalescence events can consist of binary

neutron stars, binary black holes, or neutron star–black hole binaries. Note that

a burst signal consists of a very short single event; thereby it usually has a broad

bandwidth, roughly determined by the reciprocal of the event duration [4].

2. Narrow Band Sources

Examples of narrow band sources include the rotation of single non-axisymmetric stars

such as pulsars, accreting neutron stars, and binary star systems far from coalescence.

Gravitational waves from these sources are also generally weaker than those originating

from burst sources [4].

3. Stochastic Background Sources

Gravitational waves from these sources are remnants from the early universe after

the Big Bang. They can be produced from the combined effects of weak periodic

sources throughout the Galaxy, from a large population of burst sources at very large

distances, or from the other cosmological events mentioned above.
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FIG. 2. A simplified diagram of the Michelson Fabry-Perot Interferometer. Adapted from [3].

LIGO (short for Laser Interferometer Gravitational-wave Observatory) is an NSF-funded,

large scale scientific collaboration between the California Institute of Technology and the

Massachusetts Institute of Technology designed to detect gravitational waves. As of June

2020, LIGO has two site locations – one in Hanford, Washington and the other in Liv-

ingston, Louisiana. Another important scientific collaboration is the Virgo project. The

Virgo project is a European collaboration for gravitational wave detection funded by the

French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale

della Fisica Nucleare (INFN), the Dutch Nikhef in addition to the Polish and Hungarian

institutes [6]. Virgo has one detector located in Cascina, Italy. The two LIGO sites as well

as the Virgo site in Italy each employs a type of detector called the Michelson Fabry-Perot

Interferometer (interferometer for short) [7]. Virgo/LIGO’s interferometers function by us-

ing four test masses (in this case, mirrors) in an L-shaped configuration, hung by wires near

the ends and the vertex of the ‘L’ as shown in FIG. 2. The test masses are configured so

that the length L1 ≈ L2 = L (note that at the frequency of around 1 Hz, the test masses

can move freely horizontally) [3].

If there is a gravitational wave passing in between the test masses, the space between

them will be stretched and compressed, squeezing one arm while stretching the other such

that we can calculate the value of the arm length difference ∆L = L1 − L2 [9]. To measure

this quantity ∆L, the device uses a technique called laser interferometry [10]. Specifically, a

powerful laser beam is shined at the beam splitter, thereby splitting the beam in half along

the two arms. These beams then each enter a Fabry-Perot cavity where they are reflected

back and forth between the mirrors, building up the laser light within the interferometer and
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FIG. 3. The different probability density func-

tions fX(x) are shown. Since
∫∞
−∞ fX(x)dx = 1,

the lower the functions’ maximums are, the

heavier their tails must be, leading to higher

kurtoses.

FIG. 4. This figure shows the template wave-

form strain time-series of a binary black hole

merger with masses 30 M� and 23 M� gener-

ated with PyCBC [8].

increasing the distance travelled by the beam [11] – thereby increasing the interferometer’s

sensitivity. As the laser beams in the two arms exit the Fabry-Perot cavity and return to

the beam splitter, the splitter recombines the two half-beams and gives off a portion of

the combined beam to a photodiode – hence allowing scientists to analyze the interference

patterns of the waves using optics principles, and thus determine the quantity ∆L.

For gravitational waves passing through the test masses, the fractional difference in arm

length ∆L
L

is the strain h (a quantity that measure the ‘strength’ of gravitational waves)

of the waves. Mathematically, the strain h(t) = ∆L(t)
L

can also be expressed as a linear

combination of its cross and plus polarizations, as follows [3]:

h(t) = F×h×(t) + F+h+(t) (1)

2. LIGO: History and Prospects

As briefly mentioned previously, LIGO (short for Laser Interferometer Gravitational-

wave Observatory) is a large-scale scientific collaboration between the California Institute of

Technology and the Massachusetts Institute of Technology designed to detect gravitational

waves, thereby verifying Einstein’s Theory of General Relativity.

In 1987, the Caltech/MIT LIGO team submitted a joint proposal to the US National
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Science Foundation to build two LIGO sites with the current technology; then, the initial

sites would be followed by the construction of more advanced interferometers with higher

probabilities of detecting gravitational waves. In 1990, the National Science Foundation

approved the proposal; a year after that, Congress appropriated funding for the construction

project. In 1992, NSF and Caltech signed a cooperative agreement for the management of

LIGO, choosing Hanford, Washington and Livingston, Louisiana as the first sites for LIGO’s

interferometers. The reason for building two sites, instead of one, is that if one interferometer

detects any promising data, the other one has to as well in order for the data to be considered

reliable for any detections.

In 1997, LIGO Director Barry Barish decided to split the LIGO Project into two entities:

1. LIGO Laboratory at Caltech, MIT, Hanford and Livingston which is responsible for

LIGO operations and advanced interferometer R&D.

2. The LIGO Scientific Collaboration (LSC) which is responsible for coordinating LIGO’s

scientific research and data analysis, and for expanding LIGO to scientists beyond

Caltech and MIT.

The two observatories were completed in the fall of 1999, with the initial interferometers

up and working from 2002-2010. During this time, there were a series of six “science runs”

called S1, S2,..., S6. LIGO first achieved its promised design sensitivity in science run S5

(2005-2007). After S5, LIGO received a series of enhancements, called “eLIGO”, improv-

ing its performance by 20% [12]. Then, to further upgrade LIGO, another construction

project called Advanced LIGO (aLIGO) began in 2008, two years before initial LIGO was

retired. Although initial LIGO and eLIGO did not successfully detect any gravitational

waves, advanced LIGO did.

The construction of advanced LIGO at both sites (Hanford and Livingston) was com-

pleted in 2015. Its first run was called O1 spanning 3 months in the fall of 2015 [12]. Very

fortunately, on September 14, 2015 at 09:50:45 UTC, aLIGO detected gravitational waves

from a binary merger of two black holes with masses 29 and 36 times our Sun [13]. This

event was name GW150914 (GW stands for gravitational waves and the numbers represent

the date) The results were subsequently published in the Physical Review Letters on 11

February 2016, winning LIGO’s pioneers (Kip Thorne, Rainer Weiss, Barry Barish) a Nobel

Prize in Physics in 2017. About three months later, on December 26, 2015 at 03:38:53 UTC,

another event was detected; this time, it is from a 22-solar-mass (22 times the mass of our
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Sun) Binary Black Hole Coalescence [14].

Following O1, O2 ran from 30 November 2016 to 25 August 2017, with Livingston ex-

ceeding O1’s sensitivity by 15–25% sensitivity [6], and with Hanford’s sensitivity remaining

around O1’s. During LIGO’s O2 run, another detection was confirmed as gravitational

waves. On January 4, 2017 at 10:11:58 UTC, a binary black hole coalescence of 50-solar-

mass was detected [15]. The third observing run, O3, was started on April 1, 2019 and

ended on March 23, 2020 [16].

Not only does LIGO and its detection of gravitational waves provide provide experimental

confirmations of Einstein’s Theory of General Relativity, it also opens entire new windows

of application in other fields such as astronomy and fundamental physics. For example,

gravitational waves provide a astronomers with new tools of discovering cosmological events

for which traditional ‘electromagnetic means’ cannot be used, such as black holes. [17]

Furthermore, gravitational waves can also contribute to pressing questions in fundamental

physics such as the hierarchy problem, singularities and vacuum energy [18].

B. LIGO Data Analysis and Conventions

1. The Fourier Transform

The signal from Virgo/LIGO is recorded as a function of time. However, to process this

signal, we must usually transform the signal from its original time-domain into its frequency-

domain through the use of a mathematical tool called the Fourier Transform. In simplest

terms, the Fourier Transform decomposes a function into its frequency content. Given a

continuous time-series function F (t), its frequency-domain representation F̃ (f) is given by

[19]:

F̃ (f) =

∫ ∞
−∞

F (t)e−2πiftdt (2)

Notice that F̃ (f) is a complex-valued function whose magnitude represents the frequency

amplitude and whose argument represents the phase offset. Similarly, a frequency-domain

continuous function F̃ (f) can also be transformed back into its time-domain representation
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using an inverse Fourier Transform. Given F̃ (f), F (t) can be calculated by the equation:

F (t) =

∫ ∞
−∞

F̃ (f)e2πiftdf (3)

Unfortunately, LIGO signal is not a continuous function in the time-domain, thus we have

to discretize our formulas for both the continuous forward and the continuous inverse Fourier

Transforms [19]. Given a time-domain signal sequence f [n], the frequency-domain represen-

tation f̃ [n] can be obtained using the Discrete Fourier Transform (DFT) as follows[20]:

f̃ [n] =
N−1∑
n=0

f [n] · e−
2π
N
ikn (4)

The time-domain sequence f [n] can be then obtained from the frequency-domain sequence

f̃ [n] through the inverse discrete Fourier transform (with a normalization factor) as such

[20]:

f [n] =
1

N

N−1∑
n=0

f̃ [n] · e
2π
N
ikn (5)

Since we are working with discrete-valued sequences, performing a DFT would give rise

to what we call spectral leakages. When the Fourier Transform is applied onto a finite, non-

periodic data segment (i.e. Virgo/LIGO data), false frequency amplitudes might occur. The

reason for this is that since the transformation is discrete in nature, sudden sharp changes

at frequency bin edges when the data are not periodic can falsely create high amplitudes.

Thus, to minimize this, we always apply a windowing function to data – tapering the data

segment’s ends, making it periodic – whenever the use of the DFT is required (note that

windowing does not decrease spectral leakage, but rather re-distributes the leakage effect so

that it causes the least harm). In this paper, I used a computer algorithm that implements

the Discrete Fourier Transform called the Fast Fourier Transform (FFT) which is included

within the Python PyCBC library [21].

2. Noise characteristics

Being able to reach a strain sensitivity of 10−23/
√

Hz [22] means Virgo/LIGO’s interfer-

ometers are extremely sensitive to any changes in the arm lengths – which can be caused by
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FIG. 5. The top figure shows the strain time-

series of 50 seconds around Glitch 1. The bot-

tom figure shows a Q-transformed spectrogram

around Glitch 1. (Data queried from [6])

FIG. 6. The top figure shows the strain time-

series of 50 seconds around Glitch 2. The bot-

tom figure shows a Q-transformed spectrogram

around Glitch 2. (Data queried from [6])

FIG. 7. The top figure shows the strain time-

series of 50 seconds around Glitch 3. The bot-

tom figure shows a Q-transformed spectrogram

around Glitch 3. (Data queried from [6])

FIG. 8. The top figure shows the strain time-

series of 50 seconds around Glitch 4. The bot-

tom figure shows a Q-transformed spectrogram

around Glitch 4. (Data queried from [6])

distorted space-time due to gravitational waves, or by vibrations that move the test masses.

Thus, recorded signal s(t) includes not only gravitational waves, but also unwanted vibra-

tions from other sources as well [23]. Any unwanted noise, even on the smallest of scales, can

still significantly interfere with data recorded by Virgo/LIGO’s interferometers. Virgo/LIGO

noise comes from many sources, but some examples include seismic noise, thermal noise, and
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FIG. 9. The top figure shows the strain time-

series of 50 seconds around Glitch 5. The bot-

tom figure shows a Q-transformed spectrogram

around Glitch 5. (Data queried from [6])

FIG. 10. The top figure shows the strain time-

series of 10 seconds around the Blip glitch near

event GW170814 found at LIGO Livingston.

The bottom figure shows a Q-transformed spec-

trogram around the same glitch. [6]

shot noise. [4].

Seismic noise is noise induced by the motion of the Earth’s surface. It is most prevalent in

lower frequencies and can be caused by a multitude of factors, low-level earthquakes, ocean

waves, and even human activities [4].

LIGO’s mirror’s thermal noise falls broadly into two categories of sources [24]:

1. Intrinsic thermal noise, induced by thermal forcing from internal fluctuations, causing

fluctuations in mirror material properties such as length and index of refraction.

2. Extrinsic thermal noise, induced by externally imposed temperature variations that

drive thermal fluctuations.One example include mirrors absorbing heat from the laser

beams, thereby causing length changes by thermal expansion.

At frequencies above 100Hz, the most prominent noise is called shot noise. Shot noise is

caused by the quantum nature of light, creating randomness in the arrival times of photons

on the beam splitter.

In order to extract buried gravitational wave signals from noise, we must first under-

stand the statistical properties of the noise. Noise is said to be stationary if its statistical

properties do not significantly change over time. Another important noise characteristic is

its Gaussianity. Given ‘Gaussian’ noise with a time-series function n(t), both the real and
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imaginary components of its Fourier Transform ñ(f) follow the normal distribution [25];

that is, <[ñ(f)] and =[ñ(f)] have a probability density function (PDF) of:

p(x) =
1

σ
√

2π
exp

[
−1

2

(x− µ)2

σ2

]
(6)

where σ2 is the sample variance and the mean µ = 0. By the Central Limit Theorem in

statistics, a set of random noise sample naturally tends to the Gaussian distribution if suf-

ficiently large data samples were taken [26]. Nonetheless, real Virgo/LIGO noise can still

deviate from this theoretical normality. Aside from the Gaussian distribution, noise can also

follow a variety of different probability density distributions such as the Poisson distribution

or the Laplace distribution. Although it is not common in real-life Virgo/LIGO operations

that these noise models are present, this paper still considers the case of Laplacian noise for

theoretical analysis purposes. Furthermore, there also exists abrupt, transient noise sources

of, sometimes, unknown origins called glitches [23]. Glitches can be grouped into a variety

of classifications according Gravity Spy’s ‘Field Guide’ [27]. In this paper, we only pri-

marily discuss five types of glitches: Extremely Loud, Scattered Light, Power Line, Whistle,

and Blip. Extremely Loud is a broad classification for major detector disturbances such as

photodiode saturation, causing loud and high energy transient noise bursts. Scattered Light

glitches are caused by malfunctions in the optical mechanisms of Virgo/LIGO; they look like

upward humps and are particularly harmful in searching for binary inspirals [27]. The third

classification of glitches is called Power Line; these glitches are caused by electrical equip-

ments such as air compressors that use alternating current (AC). The fourth classification

is called Whistle glitches; they are usually reverse V-shaped and are caused by radio signals

[27]. Finally, Blip glitches are very short duration (≈ 40ms) noise bursts at frequencies be-

tween 30 and 500 Hz. As of currently, there are no known causes and thus Blip glitches are

the most damaging to the detection of gravitational waves [27]. It is worth pointing out that

over short time intervals, though, Virgo/LIGO noise can still be reasonably approximated

to be Gaussian and stationary [6].
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FIG. 11. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the template

signal from perfectly Gaussian noise scaled down by a factor of 10−21. A signal peak was detected

at time t = 35.0s with SNR ρ = 20.0

FIG. 12. The resulting χ2
r statistic for perfectly Gaussian noise scaled down by a factor of 10−21.

A strong dip toward unity is clearly seen at the expected time.

3. Matched filtering

The primary goal of Virgo/LIGO data analysis is to determine if there is gravitational

wave signal buried in the noise. There are many ways that this can be accomplished; how-

ever, the most efficient and effective method is called matched filtering, especially in cases

where noise is both Gaussian and stationary [28]. Matched filtering allows the recorded data

stream to be searched for the presence of a known gravitational wave template with varying

arrival time and phase offset [29]. Matched filtering requires three components: the recorded

data stream s(t), the power spectral density (PSD) function Sn(t) of the noise, and a known

waveform template h(t) of the gravitational wave. (Note that the PSD is essentially a mea-

sure of how power is distributed at different frequencies of the signal; detailed mathematical

descriptions can be found in [30].) Given these quantities, the complex-valued output of
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FIG. 13. The resulting χ2
r statistic for perfectly Gaussian noise scaled down by a factor of 10−21,

zoomed in to just the two-second interval between the time of expected signal.

FIG. 14. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the template

signal from perfectly Laplacian noise with b = 1, scaled down by a factor of 10−21. A signal peak

was detected at time t = 35.0s with SNR ρ = 12.6.

matched filtering at time t = t0 can be computed as follows [31]:

z(t0) = 4

∫ ∞
0

s̃(f)h̃∗(f)

Sn(f)
e2πift0df (7)

where h̃∗(f) denotes the complex conjugate of the Fourier Transform of the template strain

h(t). Notice that the existence of Sn(f) in the denominator essentially down-weighs the

frequencies where the noise is loud and does the opposite where the noise is weak [23].

Given the complex matched filter output z(t), we can compute a test statistic value ρ called

the signal-to-noise ratio as follows [31]:

ρ(t) =
|z(t)|
σ

(8)
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FIG. 15. The resulting χ2
r statistic for perfectly Laplacian noise with b = 1 scaled down by a factor

of 10−21. A strong dip toward unity is seen with climbing values just around it.

FIG. 16. The resulting χ2
r statistic for perfectly Laplacian noise with b = 1 scaled down by a factor

of 10−21. The graph is zoomed in to show just the two-second time interval around the time of

expected signal. A strong dip toward unity is seen.

where σ is a normalization factor is computed from [31]

σ2 = 4

∫ ∞
0

|h̃(f)|2

Sn(f)
df (9)

Notice that here, the template waveform is computed using a set of parameters of the

astrophysical source (e.g. the total mass, the spins, the initial frequency, etc of a binary

inspiral). The goal of the matched filtering search process is to see which template would

give the highest SNR ρ(t), and thus is mostly likely to be the strain signal in the data stream.

In the presence of non-Gaussian and/or non-stationary noise and/or glitches, matched

filtering does not perform as well as expected, since the filter itself is derived from Gaussian

and stationary noise. A detailed mathematical derivation of the matched filter from a

stationary, Gaussian noise model can be found in Brown (2007) [32].
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FIG. 17. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the template

signal from perfectly Laplacian noise with b = 2, scaled down by a factor of 10−21. A signal peak

was detected at time t = 35.0s with SNR ρ = 6.1.

FIG. 18. The resulting χ2
r statistic for perfectly Laplacian noise with b = 2 scaled down by a factor

of 10−21. A small dip toward unity is seen.

There are several ways of incorporating matched filtering into a computer program that

analyzes LIGO’s signal. In this paper, I only make use of the matched filtering algorithm

implemented in the open-source Python software package PyCBC [8]. This algorithm is

based on the FINDCHIRP algorithm presented above and in [31].

4. χ2-consistency testing and SNR re-weighting

As described in the previous section on matched filtering, the algorithm breaks down

in the presence of spurious noise sources such as glitches and non-Gaussian and/or non-

stationary noise. When this happens, matched filtering gives rise to elevated signal-to-noise

peaks that are due to noise instead of gravitational waves of astrophysical origins, further
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FIG. 19. The resulting χ2
r statistic for perfectly Laplacian noise with b = 2 scaled down by a factor

of 10−21. The graph is zoomed in to show just the two-second time interval around the time of

expected signal. A relatively weak dip toward unity is seen.

FIG. 20. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the template

signal from perfectly Laplacian noise with b = 3, scaled down by a factor of 10−21. A signal peak

was detected at time t = 21.7s with SNR ρ = 4.6.

complicating the detection data analysis pipeline. To address this issue, many existing

detection pipelines, such as the PyCBC pipeline [33], employ the use of signal consistency

testing to distinguish between real signals and false ones due to noise. There are different

methods to perform consistency testing on Virgo/LIGO data. In this paper, we make use

of the χ2 time-frequency discriminator test described with great details in Allen (2005)

[34] and implemented in PyCBC’s search pipelines [8]. The general purpose of the χ2 test

is to see how much different ranges of frequencies of the template waveform contribute

to the signal-to-noise ratio ρ(t). The overall algorithm goes as follows. We first divide

our template up into p frequency sub-intervals (or frequency bins) ∆f1,∆f2, ...,∆fp with

corresponding signal-to-noise ratios ρ1, ρ2, ..., ρp. Then, we compute the extent to which a
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FIG. 21. The resulting χ2
r statistic for perfectly Laplacian noise with b = 3 scaled down by a factor

of 10−21. A very weak dip toward unity is seen.

particular frequency bin contributes to ρ(t) by calculating a χ2 test statistic as follows:

χ2 =

p∑
i=0

(
ρi −

ρ

p

)2

(10)

where χ2 has a classical χ2 probability density distribution with degrees of freedom ν =

2(p − 1) since the signal-to-noise ratio ρ is a complex valued number. If the template

matches closely with signal-to-noise output at a certain bin, the χ2 test statistic should be

close to ν. In this paper, we will be normalizing χ2 as follows

χ2
r =

χ2

ν
(11)

The reduced chi-squared value χ2
r would then approach unity when the template matches

well with the signal-to-noise and deviate from that when it does not.

Using the reduced χ2
r value, we can then ‘re-weigh’ our signal-to-noise ratio ρ(t) by

utilizing the fact that χ2
r describes the degree to which the SNR deviates from the template.

The ‘re-weighted’ SNR, denoted ρ̂, is computed by scaling ρ as follows:

ρ̂ = ρ ·

1 if χ2
r ≤ 1[

1
2

+ 1
2
(χ2

r)
3
]−1/6

if χ2
r > 1

(12)

Note that this process of re-weighing the SNR down-weighs ρ where it is not strongly

matched by the template used in the computation of ρ and does the opposite where the

template closely aligns with ρ(t).
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FIG. 22. The resulting χ2
r statistic for perfectly Laplacian noise with b = 3 scaled down by a factor

of 10−21. The graph is zoomed in to show just the two-second time interval around the time of

expected signal.

FIG. 23. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the injected

template signal from Glitch 1. A signal peak was detected at time t = 17.7s with SNR ρ = 305.0.

III. METHODOLOGY

The following subsection A discusses the methodology used in the performance evalu-

ation of matched filtering and χ2-consistency testing in the presence of noise with known

distributions as well as transient glitches. Then, in subsection B, I provide the procedures

undertaken in demonstrating the performance of matched filtering and χ2-consistency test-

ing for a Blip glitch found near event GW170814. All data analysis techniques (matched

filtering and χ2-consistency testing) were implemented through the PyCBC software pack-

age [8]. All Python script implementation of this paper’s methodology can be found here or

at [35].

19

https://colab.research.google.com/drive/10q3SdhNjWyoZaVPdLqyoCEsSovplvMrK?usp=sharing


FIG. 24. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the injected

template signal from Glitch 2. A signal peak was detected at time t = 17.7s with SNR ρ = 294.6.

FIG. 25. The resulting χ2
r statistic for Glitch 1. χ2

r(t) is extremely large and fluctuates frequently

with no apparent dip near the expected time.

A. Performance of matched filtering and χ2-consistency testing in different noise

conditions

1. Performance in the presence of Gaussian and Laplacian noise

In this paper, I considered two main types of noise distributions – Laplacian and Gaussian

– with small variations in the Laplacian case, making the total number of noise distributions

analyzed to be four. The analyzed noise distributions are as follows:

• Perfectly Gaussian noise with µ = 0 and σ = 1 scaled down by a factor of 10−21.

• Laplacian noise with location µ = 0 and scale parameter b = 1, 2, 3. Laplacian noise

with µ = 0 and varying b was chosen for the purposes of this study due to its symmetric

nature (similar to Gaussian noise) and varying levels of kurtosis. The higher the scale

20



FIG. 26. The resulting χ2
r statistic for Glitch 1. The graph is zoomed in to show just the two-

second time interval around the time of expected signal. χ2
r(t) is extremely large and no apparent

dip near the expected time was found.

FIG. 27. The resulting reweighted SNR ρ̂(t) using the computed χ2
r statistic for Glitch 1.

value b, the heavier the Laplacian noise distribution will be at the tails (note that

heavier tails correspond to higher kurtoses). These Laplace distributed noise models

were all scaled down by a factor of 10−21. An illustration of these distributions are

shown in FIG. 3.

Pure Gaussian noise was generated via the Python NumPy package’s random.normal

method then scaled down by a factor of 10−21 [21]. For the Laplacian noise, the random.laplace

method was used. It was then scaled down accordingly similar to the Gaussian case. These

noise stretches are all 50 seconds in length. Their sampling rate, and all subsequent time-

series data described in this paper are 4096 Hz.

Then, I created a 50-second time-series template using post-Newtonian approximation

theory (a method of approximating Einstein’s field equations). The time-series template
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FIG. 28. The resulting χ2
r statistic for Glitch 2 zoomed out to the entire search time interval.

FIG. 29. The resulting χ2
r statistic for Glitch 2. The graph is zoomed in to show just the two-second

time interval around the time of expected signal. χ2
r(t) is moderately large with a very small dip

toward unity at the expected time.

generation was done using PyCBC’s get td waveform method; I also only used the plus

polarization of the template waveform since this paper studies only the performance of

signal extraction algorithms, not the waveforms themselves. The template waveform was of

a binary black hole inspiral with masses 30 M� and 23 M� at an effective distance of 500

Mpc and initial frequency of 14 Hz. The waveform and was created using the ‘IMRPhenomD’

model as the approximant. This template waveform in shown in FIG. 4.

I then proceeded to zero-pad the template so that its length matches the length of the

50-second stretch of noise. Afterwards, I shifted the templates so that they start at time

t = 35s (using the roll method) in the 50-second stretch of data. A signal injection was

then carried out to inject the template waveforms into the pure 50-second noise stretch.

Afterwards, I computed an estimtae of the PSD of the data. Then, I applied the PyCBC

matched filtering algorithm using the matched filter method. The signal-to-noise ratio

(SNR) ρ(t) computed from the matched filtering algorithm was then cropped by 10 seconds
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FIG. 30. The reweighted SNR ρ̂(t) using the computed χ2
r statistic for Glitch 2. It can be seen

that there is a moderately distinct ρ̂(t) peak at time t = 35s with a value of ρ̂(t) = 9.0

FIG. 31. The cropped SNR ρ(t) after matched filtering was applied to recover the injected template

signal from Glitch 3. A signal peak was detected at time t = 35.0s with SNR ρ = 20.9.

on both ends. The reason for this is that applying the matched filter on a data segment of

finite length using an estimated PSD gives rise to ‘edge effects’. In simplest terms, these

‘edge effects’ give extremely high, false SNR peaks near the edges that can be mistaken

for gravitational wave signal; thus, ρ(t) needed to be trimmed on both ends. Then finally,

I applied the χ2-consistency test using 40 frequency bins on this trimmed SNR ρ(t) and

proceeded to re-weigh it to find ρ̂(t) as described in subsection II B 4. Using the cropped

SNR ρ(t) as well as the results of the χ2 test, I could then analyze them to evaluate the

search’s performance.
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FIG. 32. The resulting χ2
r statistic for Glitch 3. The graph is zoomed in to show just the two-

second time interval around the time of expected signal. There is a moderately strong dip toward

unity at the expected time.

2. Performance in the presence of glitches

The last aspect of this study is to evaluate the performance of matched filtering and χ2-

consistency testing in the presence of transient glitches. In this paper, I used five samples of

known Virgo/LIGO glitches with two ‘Extremely Loud’ glitches, one Scattered Light glitch,

one Whistle glitch, and one Power Line glitch. The glitch samples chosen for this study are

as follows (note that the GPS times indicate times of greatest amplitude):

• Glitch 1: An ‘Extremely Loud’ glitch found at the Virgo detector on August 2nd, 2017,

17:04:11 UTC (GPS time 1185728669).

• Glitch 2: Another ‘Extremely Loud’ glitch, also found at the Virgo detector but on

August 19nd, 2017, 05:41:24 UTC (GPS time 1187156502).

• Glitch 3: A Scattered Light glitch found at the Livingston detector on December 3rd,

2016, 04:17:11 UTC (GPS time 1164773848).

• Glitch 4: A Power Line glitch found at the Hanford detector on August 15th, 2017,

01:59:25 UTC (GPS time 1186797583).

• Glitch 5: A Whistle glitch found at the Livingston detector on April 23, 2017, 03:08:21

UTC (GPS time 1176952119).

To extract and make use of these glitches, I employed 25 seconds before and after their

times of peak amplitude. Note that these samples of glitches also contain background noise
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FIG. 33. The resulting reweighted SNR ρ̂(t) using the computed χ2
r statistic for Glitch 3. The

peak re-weighted SNR remained the same as the previous case with ρ̂(t) = 20.9 at time t = 35.0s.

that may or may not be Gaussian and stationary in addition to the glitches themselves.

Removing background noise from these samples and extracting these glitches require complex

methods that were not attainable within the time frame of the writing of this paper. A full

catalog of known Virgo/LIGO transient glitches from which these glitches were acquired was

provided by Michael Zevin (PhD Candidate at Northwestern University) and the GravitySpy

team. [27].

For visualization purposes, strain time-series data of the glitches and their Q-transformed

spectrograms are shown from FIG. 5 to FIG. 9. Note that the Q-transform is a special filter

that mirrors the Fourier transform, often used to pick out special features of gravitational

wave signals, highlighting signals with higher energy intensities. The mathematical details

of this analysis technique can be found in Chatterji et. al (2004) [36]. With these 50 seconds

long glitch segments in hand, I then proceeded to follow the same injection, recovery, and

consistency testing procedures discussed in subsection III A 1.

B. Performance of matched filtering and χ2-consistency testing in distinguishing

between event GW170814 and a nearby Blip glitch found at the Livingston detector

On August 14th, 2017, 10:30 UTC, both LIGO detectors in Hanford and Livingston as

well as the Virgo Observatory in Italy detected a binary black hole coalescence with initial

masses 30.5 M� and 25.3 M�, called event GW170814 [37]. However, just about six seconds

before the detection of GW170814 at the LIGO Livingston detector, a Blip glitch occurred.

Although this Blip glitch was quiet and narrow enough so that it did not significantly affect
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FIG. 34. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the injected

template signal from Glitch 4. A signal peak was detected at time t = 35.0s with SNR ρ = 21.8.

the detection results of event GW170814, it still created a spurious SNR peak in the resulting

ρ(t) after matched filtering the data. To address this issue, χ2-consistency testing and SNR

re-weighting were employed. In this paper, I sought to analyze the performance of matched

filtering and χ2-consistency testing in distinguishing between event GW170814 and the Blip

glitch by analyzing the data and finding the signal myself, using a modified Python script

referenced from GWOSC’s 2020 Open Data Workshop, Tutorial 2.3 [6].

First, a 15-second data segment around event GW170814 that includes the blip glitch

was queried directly from GWOSC using the fetch open data from the Python package

gwpy. A visualization of this Blip glitch can be found in FIG. 10. Then afterwards, matched

filtering and χ2-consistency testing were applied in a similar fasion as described in the

previous subsection. In this case, however, since the data segment is much shorter than

the 50 seconds duration in the previous section, only 2 seconds of data on the edges were

cropped. Using this calculated χ2
r statistic, I then performed an SNR re-weighting to obtain

ρ̂(t). With this information in hand, I could then evaluate the performance of matched

filtering and the χ2-consistency test.

IV. RESULTS AND DATA ANALYSIS

A. Results for the case of Gaussian and Laplacian noise

Since this template was zero-padded and rolled so that it starts at time t = 35s referenced

from the beginning of the noise/glitch data stretch before being injected, the peak-SNR after
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FIG. 35. The resulting χ2
r statistic for Glitch 4. The graph is zoomed in to show just the two-

second time interval around the time of expected signal. There is a moderately strong dip toward

unity at the expected time.

matched filtering is expected to be at time t = 35s. The PyCBC matched filtering and χ2-

consistency testing algorithms yielded reasonable results.

It can be seen from FIG. 11 and FIG. 14 for the perfect Gaussian noise and the Laplacian

noise with b = 1 cases that there are clear, thin, and distinct SNR peaks at time t = 35.0s.

The peak SNR’s of these two cases, though, are of different values. In the case of Gaussian

noise, the SNR is 20.0, while it is only 12.6 in the case of Laplacian noise with b = 1.

Furthermore, it can also be seen that the SNR ‘noise-floor’ in FIG. 11 is similar to that in

FIG. 14. Specifically in both cases, the SNR ‘noise-floor’ varies around ρ = 3.75. Looking

at the χ2
r results for these two cases in FIG. 12 and 13 (Gaussian noise) and FIG. 15 and 16

(Laplacian with b = 1 noise), we can also see some similarities. The χ2
r graphs for both cases

show a strong dip at the expected time t = 35s, indicating a strong correlation between high

SNR and template contribution. It is also worthy to note that in both of these cases, the

χ2
r value grows just around the strong dip. The reason for this is because at these times

around t = 35s, the template contributes to the high SNR but does not perfectly align with

it [6]. In the Gaussian case, however, the χ2
r value climbs to a higher value compared to the

Laplacian with b = 1 case around the expected time (reaching a maximum of χ2
r ≈ 7 for the

Gaussian case and χ2
r ≈ 4 for the Laplacian case with b = 1). This is also expected since

high χ2
r values just around a strong dip toward unity indicates that the background noise

fits the Gaussian model well.

In the case of Laplacian noise with b = 2 (FIG. 17), the detection result was also accurate

(i.e. there is a clear, thin, and distinct peak at time t = 35.0). However, in this case, the

SNR ρ(t) is much lower, reaching only a value of 6.1. Furthermore, it can be seen that the
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FIG. 36. The resulting re-weighted SNR ρ̂(t) using the computed χ2
r statistic for Glitch 4. The

peak re-weighted SNR remained the same as the previous case with ρ̂(t) = 21.8 at time t = 35.0s.

SNR ‘noise floor’ is also relatively consistent with the Gaussian noise case and the b = 1

Laplacian noise case, fluctuating around ρ = 3.0, though many times reaching ρ = 4.0.

Looking at FIG. 18 and FIG. 19 for the χ2
r graphs, however, it can be seen that there are

distinct differences compared to the Gaussian case or the Laplacian case with b = 1. In this

Laplacian case with b = 2, the dip toward unity at time t = 35s is much weaker as χ2
r in the

region around it does not climb as high, indicating that the noise background is getting less

and less Gaussian as expected.

In the case of Laplacian noise with scale parameter b = 3, however, we can make new

interesting observations. As shown in FIG. 20, the SNR function ρ(t) has no clear and

distinct peaks. Throughout the entire time interval, ρ(t) appears to fluctuate randomly

around ρ = 3. The function’s highest SNR is 4.6, located at time t = 21.7s, which is

clearly inaccurate. However, it is still noteworthy that the SNR value at time t = 35s is still

higher than its surroundings, coming close to the maximum value found at time t = 21.7s.

Looking at FIG. 21 and FIG. 22 for the χ2
r statistic, we can see that there is a very small dip

toward unity at the expected time t = 35s, indicating that there exists a very weak signal at

that time. Note that this dip is a lot weaker compared to the cases of Gaussian noise and

Laplacian noise with b = 1, 2 – where the dip is much more apparent even when zoomed out

to the entire time interval.

Note that in all the four cases presented above (Gaussian noise, Laplacian noise with

b = 1, b = 2, b = 3), the reweighted SNR’s ρ̂(t) are extremely similar if not identical with

ρ(t). In the first three cases – Gaussian, Laplacian with b = 1, and Laplacian b = 2 – the
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FIG. 37. The resulting cropped SNR ρ(t) after matched filtering was applied to recover the injected

template signal from Glitch 5. A signal peak was detected at time t = 35.0s with SNR ρ = 20.9.

FIG. 38. The resulting χ2
r statistic for Glitch 5. The graph is zoomed in to show just the two-

second time interval around the time of expected signal. There is a rather strong dip toward unity

at the expected time.

explanation is that all of these these three situations already have clear and distinct peaks

with close-Gaussian (Laplacian with b = 1) or perfect Gaussian noise itself. Therefore,

the re-weighing function had little effects. In the last case (Laplacian with b = 3), the

re-weighting function had little effects not because the noise is Gaussian or close-Gaussian;

rather, it was because the noise was too loud, rendering the matched filter’s ability to pick

the signal out of the noise effectively. Note that the χ2-cosistency test only re-weighs ρ(t)

so that the detected signal from matched filtering is amplified, not to dig out signal from

louder noise as an alternative to matched filtering itself. For this reason, ρ̂(t) graphs for

these cases were omitted from this paper.

29



FIG. 39. The resulting re-weighted SNR ρ̂(t) using the computed χ2
r statistic for Glitch 5. The

peak re-weighted SNR remained the same as the previous case with ρ̂(t) = 27.6 at time t = 35.0s.

B. Results for the case of transient glitches

Figures 23 and 24 show the detection results for the two Extremely Loud glitches (Glitch

1 and 2). Both of these results share one thing common: They both have an extremely high

SNR peak, ranging in the hundreds (ρ = 305.0 and ρ = 294.6). It is also worth noticing

that these peaks are more triangular / pyramidal in shape – that is, the elevated SNR

effects caused by Extremely Loud glitches are spread out across multiple frequency bins, and

subsequently heavily affect the time-domain data. Moreover, note that in FIG. 23, we can

see that Glitch 1 also gave rise to several lower amplitude false-alarm SNR peaks in addition

to the highest peak found at time t = 17.7s. Similar to the highest peaks, these peaks are

more triangular in nature and are of unusually high amplitudes; thus, they can easily be

differentiated from real gravitational wave signal.

Considering the χ2
r graphs for Glitch 1 in FIG. 25 and 26, we can see that the χ2

r statistic

is extremely high and contains no apparent dips at the expected time t = 35s. This means

that the buried signal would likely be missed in a real gravitational wave search if data

analysis stopped here. However, considering the re-weighted SNR ρ̂(t) graph in FIG. 27,

there is a small, but still relatively distinct peak at the expected time t = 35s, though not

enough to claim a detection. It is also noteworthy to point out that the extremely high

signal-to-noise amplitudes caused by the glitch was substantially reduced down to less than

80 from the initial maximum value of 294.6. FIG. 28 and 29 show the χ2
r graphs for Glitch

2. FIG. 30 shows the re-weighted SNR ρ̂(t) for Glitch 2. The results for Glitch 2 are similar

to those of Glitch 1; they both have weak dips toward unity at the expected time t = 35s
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for the χ2
r statistic and damped-down glitches SNR after the re-weighting. However, it can

be seen that there is a small but relatively distinct peak (more distinct compared to that of

Glitch 1) at time t = 35s, reaching a value of ρ̂(t) = 9.0 – indicating that a signal is likely

to exist at this time for the case of Glitch 2.

Figures 31, 34, and 37 show the SNR results for the recovery of the template signal

injected into Glitch 3, 4, and 5, respectively. Notice that all three of these cases resulted

in similar peak SNRs, with all three results reaching a signal-to-noise ratio ρ of around 20.

In addition to that, the SNR ‘noise floor’ is similar all across of three cases, fluctuating at

around ρ ≈ 4. Furthermore, considering their χ2
r statistic graphs (shown if FIG. 32, FIG. 35,

and FIG. 38 for Glitch 3,4,5 respectively) we can see that three of these cases have rather

strong and distinct dips toward unity at the expected time t = 35s with the dip of Glitch 3

being slightly weaker than those of the other two. Note that Glitch 3 is rather spread out

on the search-time interval, with concentrated noise power evenly distributed throughout;

therefore, the resulting weaker χ2
r dip for Glitch 3 was reasonable. Similar to the case of

Gaussian and Laplacian noise with b = 1 and b = 2, the re-weighting process had very little

impact on the detection results for Glitch 3,4, and 5. The re-weighted SNR graphs for Glitch

3,4 and 5 are shown in FIG. 33, FIG. 36, and FIG. 39 respectively. The reason for this is

also similar to the known noise distributions case – the original ρ(t) already has a clear

and distinct SNR peak and therefore consistency testing had little impact. However, it is

worth pointing out that the ‘noise background’ in these cases were suppressed by consistency

testing, thereby validating our original detection results.

C. Results for event GW170814 and the LIGO Livingston Blip glitch

Figure 40 shows the resulting SNR ρ(t) after matched filtering data from event GW170814

and the nearby Blip glitch found at the LIGO Livingston detector. It can clearly be seen

from this figure that there are two thin and distinct signal-to-noise peaks with the first one

having a value of ρ ≈ 12.0 and the second one having a value of ρ ≈ 12.9. According to

the observation paper of event GW170814 published by the LIGO Collaboration in [37],

only the second peak represents the actual binary black hole coalescence. Without this

knowledge beforehand, however, it is hard to distinguish between the two peaks to see

which one actually comes from an astrophysical source. Therefore, computation of χ2
r and
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FIG. 40. The resulting SNR ρ(t) for event GW170814 and the nearby Blip glitch. The first SNR

peak is due to the glitch; it has a value of ρ ≈ 12.0. The second SNR peak is event GW170814; it

has a value of ρ ≈ 12.9.

FIG. 41. The resulting re-weighted SNR ρ̂(t) using the computed χ2
r statistic for event GW170814

and the nearby Blip glitch. It can be seen that the initial peak due to the glitch in ρ(t) has

‘disappeared’.

SNR re-weighting is extremely crucial. Figure 41 shows the resulting re-weighted SNR ρ̂(t)

using the computed χ2
r statistic from the χ2-consistency test. In this figure, it can be seen

that the first spurious SNR peak due to the glitch was completely suppressed, leaving only

the real SNR-peak of the binary black hole coalescence to be found.

V. CONCLUSIONS

From the results presented in subsection IV A, it can be concluded that matched filter-

ing performs best in stationary and perfect Gaussian noise. Furthermore, there is a strong

positive correlation between the kurtosis of the Virgo/LIGO noise distributions and the per-

formance of matched filtering. This observation agrees with the mathematical framework of

the matched filtering detection algorithm. Although both Laplacian noise (regardless of scale
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parameter b) and Gaussian noise are symmetric about the y-axis, Laplacian noise distribu-

tions are much more tail-heavy. This means that when random noise was generated, louder

noise was favored. Therefore, it makes mathematical sense that such a probability density

distribution would induce a negative effect on the matched filtering detection algorithm.

Furthermore, it can also be concluded that matched filtering in the presence of background

noise with consistent probability distributions benefits little from the χ2-consistency test.

In these cases, the χ2-consistency test either re-iterates the findings of matched filtering, or

fail to identify a signal if matched filtering has previously failed.

From the results and data analysis discussed in subsection IV B and IV C , we can

conclude that short-duration Extremely Loud glitches have the greatest impact on the per-

formance of matched filtering in gravitational wave detection. Specifically, Extremely Loud

glitches elevate the signal-to-noise ratio to unusually high levels and can easily mask out real

gravitational wave signal. However, the effects of these glitches have distinct characteristics

that are worth noting. First, these glitches elevate the signal-to-noise ratio to the extremes,

reaching up to the hundreds in magnitude. This characteristic is in clear contrast with

real gravitational wave signals, where the resulting SNRs are usually only 2 digits in mag-

nitude. Second, elevated time-series SNR ρ(t) peaks due to Extremely Loud glitches have

wide bottoms, looking almost pyramidal / triangular like over large time intervals. This is

also starkly different from the characteristics of real gravitational wave signals, where the

SNR peaks are thin and distinct with no wide bottoms, spanning only very small time inter-

vals. Moreover, for signal detection accompanied with Extremely Loud glitches, the use of

χ2-consistency testing and SNR re-weighting is very important. Although the test does not

perform as well if the glitches are exceedingly loud as in the case of Glitch 1, it still proves

to be useful in picking out real signal in quieter glitches as in the case of Glitch 2.

In the cases of Scattered Light, Power Line, and Whistle glitches, the noise background

are generally low enough for matched filtering to detect real signal from medium mass binary

inspirals at an effective distance of 500MPc. Therefore, since matched filtering already gives

clear and distinct SNR peaks in these situations, the use of χ2-consistency testing and

SNR re-weighting was not necessary; however, it was shown in the previous section (section

IV ), that χ2-consistency testing does indeed increase the confidence in the detection results

of matched filtering. From the results in subsection IV C, it can be concluded that for

relatively loud Blip glitches that occur near a real signal of astrophysical origin, the use of
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χ2-consistency testing and SNR re-weighting is crucial in order to distinguish the real signal

from the transient glitches.

In practice, real Virgo/LIGO data analysis procedures already have χ2-consistency test-

ing and SNR re-weighting incorporated into their procedures where there are ‘data veto’

guidelines based of the computed χ2 statistic. It has been shown in this paper that such

techniques are essential in detecting real gravitational waves from astrophysical sources as in

event GW170814. With this being said, however, the challenge lies in picking out real gravi-

tational wave signals when they coincide with transient glitches; an example of this would be

event GW170817 at the LIGO Livingston detector where a glitch coincided with the signal.

In these cases, ordinary χ2-consistency testing and SNR re-weighting procedures presented

in this paper are not sufficient. Therefore, future research should focus on developing com-

prehensive mathematical characterization of different classifications of non-Gaussian and

transient glitches so that signals can be picked out from such noise backgrounds. Further-

more, considering that this paper has qualitatively demonstrated that there is relationship

between the glitch’s amplitude to the performance of χ2-consistency testing, further research

could look for a quantitative relationship between these two values.

VI. SUMMARY

The detection of gravitational waves is especially challenging and requires extreme pre-

cision as well as sophisticated data analysis tools. In this paper, I presented two of the

most common and efficient data analysis methods for the detection of gravitational waves

– namely, matched filtering and χ2-consistency testing. I then proceeded to evaluate the

performance of these two data analysis tools in different noise conditions while using event

GW170814 as an illustrative example. Four consistent noise distributions and 6 different

glitches were analyzed. Specifically, I considered Guassian noise, Laplacian noise with b = 1,

Laplacian noise with b = 2, and Laplacian noise with b = 3. As for the glitches, I employed

2 Extremely Loud glitches, 1 Scattered Light glitch, one Power Line glitch, one Whistle

glitch, and one Blip glitch (with the Blip glitch being found near event GW170814). Upon

evaluation, I found that matched filtering performs best when detector noise is perfectly

Gaussian and stationary. Matched filtering also performs considerably well when the noise

distribution is close-Gaussian, namely Laplacian with b = 1 and b = 2. It was also shown
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that matched filtering breaks down when noise distributions are tail-heavy (that is, when

they have high kurtoses such as the Laplacian with b = 3 case). Furthermore, it was found

that the existence of Extremely Loud glitches causes exceptionally high SNRs that can easily

mask out true gravitational wave signals if the glitch and the signal coincide. In contrast,

Scattered Light, Power Line, and Whistle glitches are generally not loud enough to mask

out true gravitational wave signals; Blip glitches, however, can mimic real gravitational

wave signals if they don’t coincide. Moreover, I found that χ2-consistency testing has little

impact in cases where matched filtering already has favorable results. In such situations,

χ2-consistency testing only improves the confidence of the matched filtering detection. How-

ever, in the cases of Extremely Loud and Blip glitches, where matched filtering does not give

accurate results on its own, the use of χ2-consistency testing is crucial in being able to pick

out true gravitational wave signals.

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to Dr. Eric Myers at the State University

of New York, New Paltz for guiding me at every step of the way in the making of this paper.

Dr. Myers has guided me through my research from the very start, from teaching me the

basic background knowledge to helping me with the writing process. I could not be more

grateful of Dr. Myers’ mentorship.

I would also like to thank Michael Zevin (PhD Candidate at Northwestern University),

Dr. Peter Shawhan at the University of Maryland, and other scientists at the LIGO Scientific

Collaboration (LSC), as well as the GravitySpy team for answering many of my technical

questions and providing me with the data and documentation that without which, this

research would not have been possible.

This research has made use of data obtained from the Gravitational Wave Open Science

Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Sci-

entific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National

Science Foundation. Virgo is funded by the French Centre National de Recherche Scien-

tifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch

35

https://www.gw-openscience.org


Nikhef, with contributions by Polish and Hungarian institutes.

[1] M. Maggiore, Gravitational waves (Oxford University Press, 2008).

[2] S. Carlip, General relativity: a concise introduction (Oxford University Press, 2019).

[3] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab,

D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb,

and M. E. Zucker, Ligo: The laser interferometer gravitational-wave observatory, Science 256,

325 (1992).

[4] D. G. Blair, Advanced gravitational wave detectors (Cambridge University Press, 2012).

[5] B. Mattson, 100 Years of General Relativity (NASA Goddard Space Flight Center, 2015).

[6] T. L. S. Collaboration, the Virgo Collaboration, R. Abbott, T. D. Abbott, S. Abraham,

F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, et al., Open data from the first and second

observing runs of advanced ligo and advanced virgo (2019), arXiv:1912.11716 [gr-qc].

[7] J. D. E. Creighton and W. G. Anderson, Gravitational wave physics and astronomy an intro-

duction to theory, experiment and data analysis (Wiley-VCH-Verl., 2011).

[8] A. Nitz, I. Harry, D. Brown, C. M. Biwer, J. Willis, T. D. Canton, C. Capano, et al.,

gwastro/pycbc: Pycbc release 1.16.4 (2020).

[9] E. D. Black and R. N. Gutenkunst, An introduction to signal extraction in interferometric

gravitational wave detectors, American Journal of Physics 71, 365–378 (2003).

[10] B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. S. Amin, S. B. Anderson,

W. G. Anderson, M. A. Arain, and et al., Ligo: the laser interferometer gravitational-wave

observatory, Reports on Progress in Physics 72, 076901 (2009).

[11] M. W. Regehr, F. J. Raab, and S. E. Whitcomb, Demonstration of a power-recycled michelson

interferometer with fabry–perot arms by frontal modulation, Opt. Lett. 20, 1507 (1995).

[12] V. Kalogera and A. Lazzarini, Ligo and the opening of a unique observational window on the

universe, Proceedings of the National Academy of Sciences of the United States of America

114, 3017 (2017).

[13] B. P. Abbott et al., Observation of gravitational waves from a binary black hole merger,

Centennial of General Relativity , 291–311 (2017).

36

http://www.jstor.org/stable/2877074
http://www.jstor.org/stable/2877074
https://asd.gsfc.nasa.gov/blueshift/index.php/2015/11/25/100-years-of-general-relativity/
https://arxiv.org/abs/1912.11716
https://doi.org/10.5281/zenodo.3904502
https://doi.org/10.1119/1.1531578
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1364/OL.20.001507
https://www.jstor.org/stable/26480152
https://www.jstor.org/stable/26480152
https://doi.org/10.1142/9789814699662_0011


[14] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Gw151226:

Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys.

Rev. Lett. 116, 241103 (2016).

[15] B. P. Abbott et al. (LIGO Scientific and Virgo Collaboration), Gw170104: Observation of

a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118, 221101

(2017).

[16] W. Clavin, A. Abazorius, and L. Conti, Ligo and virgo detect neutron star smash-ups, LIGO

Caltech News (2019).

[17] S. Boughn, Detecting gravitational waves, American Scientist 68, 174 (1980).

[18] L. Barack, V. Cardoso, S. Nissanke, T. P. Sotiriou, A. Askar, C. Belczynski, G. Bertone,

E. Bon, et al., Black holes, gravitational waves and fundamental physics: a roadmap, Classical

and Quantum Gravity 36, 143001 (2019).

[19] R. G. Lyons, Understanding digital signal processing (Prentice Hall, 2011).

[20] S. Roberts, Oxford university, signal processing: Lecture 7 - the discrete fourier transform

(2020).

[21] T. Oliphant, NumPy: A guide to NumPy, USA: Trelgol Publishing (2006–), [Online; accessed

June 29, 2020].

[22] D. Martynov, E. Hall, B. Abbott, R. Abbott, T. Abbott, C. Adams, R. Adhikari, R. Anderson,

S. Anderson, K. Arai, and et al., Sensitivity of the advanced ligo detectors at the beginning

of gravitational wave astronomy, Physical Review D 93, 10.1103/physrevd.93.112004 (2016).

[23] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, V. B.

Adya, C. Affeldt, M. Agathos, and et al., A guide to ligo–virgo detector noise and extraction

of transient gravitational-wave signals, Classical and Quantum Gravity 37, 055002 (2020).

[24] S. R. Rao and K. G. Libbrecht, Ph.D. thesis (2003).

[25] T. Yamamoto, Non-Gaussian noise and data analysis of laser interferometric gravitational

wave detectors, Ph.D. thesis, Institute of Cosmic Ray Research, University of Tokyo (2016).

[26] P. Jaranowski and A. Królak, Gravitational-wave data analysis. formalism and sample appli-

cations: The gaussian case (2007), arXiv:0711.1115 [gr-qc].

[27] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani, S. Allen, M. Cabero, K. Crowston,

A. K. Katsaggelos, S. L. Larson, T. K. Lee, C. Lintott, T. B. Littenberg, A. Lundgren,

C. Østerlund, J. R. Smith, L. Trouille, and V. Kalogera, Gravity spy: integrating advanced

37

https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://www.ligo.caltech.edu/news/ligo20190502
https://www.ligo.caltech.edu/news/ligo20190502
http://www.jstor.org/stable/29773729
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
http://www.numpy.org/
https://doi.org/10.1103/physrevd.93.112004
https://doi.org/10.1088/1361-6382/ab685e
https://arxiv.org/abs/0711.1115


LIGO detector characterization, machine learning, and citizen science, Classical and Quantum

Gravity 34, 064003 (2017).

[28] C. W. Helstrom, Statistical theory of signal detection (Pergamon Press, 1975).

[29] S. Wang, J. Kanner, and A. Weinstein, Characterization of hardware injections in ligo data,

Caltech Summer Undergraduate Research Fellowships (2014).

[30] S. L. Miller and D. G. Childers, Probability and random processes: with applications to signal

processing and communications (Academic Press, 2012).

[31] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, Findchirp:

An algorithm for detection of gravitational waves from inspiraling compact binaries, Physical

Review D 85, 10.1103/physrevd.85.122006 (2012).

[32] D. A. Brown, Searching for gravitational radiation from binary black hole machos in the

galactic halo (2007), arXiv:0705.1514 [gr-qc].

[33] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,

T. Adams, P. Addesso, R. X. Adhikari, and et al., Effects of data quality vetoes on a search

for compact binary coalescences in advanced ligo’s first observing run, Classical and Quantum

Gravity 35, 065010 (2018).

[34] B. Allen, Chi-squared time-frequency discriminator for gravitational wave detection, Physical

Review D 71, 10.1103/physrevd.71.062001 (2005).

[35] V. Nguyen, Google Colab notebook for signal matched filtering and chi-squared

consistency testing, (2020). URL: https://colab.research.google.com/drive/

10q3SdhNjWyoZaVPdLqyoCEsSovplvMrK?usp=sharing.

[36] S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, Multiresolution techniques for

the detection of gravitational-wave bursts, Classical and Quantum Gravity 21, S1809 (2004).

[37] B. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Ad-

desso, R. Adhikari, V. Adya, and et al., Gw170814: A three-detector observation of gravita-

tional waves from a binary black hole coalescence, Physical Review Letters 119, 10.1103/phys-

revlett.119.141101 (2017).

38

https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1103/physrevd.85.122006
https://arxiv.org/abs/0705.1514
https://doi.org/10.1088/1361-6382/aaaafa
https://doi.org/10.1088/1361-6382/aaaafa
https://doi.org/10.1103/physrevd.71.062001
https://colab.research.google.com/drive/10q3SdhNjWyoZaVPdLqyoCEsSovplvMrK?usp=sharing
https://colab.research.google.com/drive/10q3SdhNjWyoZaVPdLqyoCEsSovplvMrK?usp=sharing
https://colab.research.google.com/drive/10q3SdhNjWyoZaVPdLqyoCEsSovplvMrK?usp=sharing
https://doi.org/10.1088/0264-9381/21/20/024
https://doi.org/10.1103/physrevlett.119.141101
https://doi.org/10.1103/physrevlett.119.141101

	Gravitational Wave Detection: Event GW170814 and the performance of matched filtering and 2-consistency testing in the presence of Gaussian noise, non-Gaussianly distributed noise, and transient glitches
	Abstract
	Introduction
	Background
	Gravitational waves and the Laser Interferometer Gravitational-Wave Observatory (LIGO)
	Gravitational waves and their detection
	LIGO: History and Prospects

	LIGO Data Analysis and Conventions
	The Fourier Transform
	Noise characteristics
	Matched filtering
	2-consistency testing and SNR re-weighting


	Methodology
	Performance of matched filtering and 2-consistency testing in different noise conditions
	Performance in the presence of Gaussian and Laplacian noise
	Performance in the presence of glitches

	Performance of matched filtering and 2-consistency testing in distinguishing between event GW170814 and a nearby Blip glitch found at the Livingston detector

	Results and Data Analysis
	Results for the case of Gaussian and Laplacian noise
	Results for the case of transient glitches
	Results for event GW170814 and the LIGO Livingston Blip glitch

	Conclusions
	Summary
	Acknowledgments
	References


