Technical Typesetting for Physics Teachers with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$

Eric Myers

"Beautiful equations made easy"

Why Use TEX?

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (pronounced "Tech") is a technical typesetting system created by Donald Knuth of Stanford University. It is used by most physicists, mathematicians, and computer scientists, and many astronomers.

MS Word works for $E=m c^{2}$ and $\mathrm{H}_{2} \mathrm{O}$, so why use $\mathrm{T}_{\mathrm{E} X}$?

Scientific typesetting made easy

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ can correctly typeset complicated mathematical expresions, with proper alignment of all elements and automatic equation numbering:

$$
\begin{align*}
\nabla \cdot \vec{D} & =\frac{\rho}{\epsilon} \tag{1a}\\
\nabla \cdot \vec{B} & =0 \tag{1b}\\
\nabla \times \vec{E} & =-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \tag{1c}\\
\nabla \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{J} \tag{1d}
\end{align*}
$$

This is no mere "processing" of words.

Some type of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or $\mathrm{LaT} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is required to submit papers to the arXiv.

The TEX Process - it's not WYSIWYG

Typesetting a paper with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is like compiling a computer program:

1. Instructions in "manuscript" file, myfile.tex (source code)
2. tex or latex (the TEX "engine" and macros (libraries)) produces device independent (DVI) file, myfile.dvi (object file)
3. DVI file viewed on screen, converted to PostScript file, or converted to a PDF file. (loader/linker)

On a Mac or PC this is all behind the scenes.
Note! pdfTEX goes straight from .tex to .pdf

Typesetting: The Finer Points

Typesetting is more complex than word processing, but for regular text (no equations) typesetting is easy if you keep a few subtle points in mind:

- A new paragraph is signaled in T_{EX} by a blank line. The entire paragraph is typeset at one time, with optimal line breaks chosen to make the entire paragraph look good.
- Quotation marks are more complicated: You should use left and right single quotes twice to get left and right quotation marks.
- Use a single dash for a short hyphen, "-", a double dash for a regular hyphen, "-", and a triple dash for a long hyphen "-".
- Diacritical marks are created with special control characters. For example, typeset the words "façade" and "coördinates" with fa\c cade and co\"ordinates.

```
"I have seen - attack ships on fire off the shoulder of Orion.
I watched c-beams glitter in the dark near the Tannhäuser Gate."
```


Symbols, Subscripts, Superscripts

Mathematics text is typeset differently. Variables are typeset in italics, with different spacing. Mathematics in the body of a text must therefore be enclosed in "math quotes", which are dollar signs, \$.

Math symbols are indicated by a "control word" name, which begins with a backslash, (eg. \$\alpha\$ and \$\Omega\$ produce α and Ω).

Subscripts are indicated with an underscore _, while superscripts are indicated with a circumflex -. Grouping is indicated with curly brackets \{ and \}.

- To get " $Y_{l}^{m}\left(\theta_{1}, \phi^{\prime}\right)$ " you type:
\$Y_l^m(\theta_1,\phi^\prime)\$
- To get " $G_{\mu \nu}=g_{\mu \nu} R+\frac{1}{4} R_{\mu \nu}$ " type:

$$
\$ G_{-}\{\backslash m u \backslash n u\}=g_{-}\{\backslash m u \backslash n u\} \quad R+\{1 \text { lover } 4\} R_{-}\{\backslash m u \backslash n u\} \$
$$

Displayed Equations

Long equations, or important equations, are set off from the text as "displayed" equations. To get a displayed equation you double the math quotes. To get this:

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int_{-\infty}^{\infty} \frac{Y_{l}^{m}\left(\theta_{1}, \phi_{1}\right) Y_{l}^{m}\left(\theta_{2}, \phi_{2}\right)}{\sqrt{2 \pi}} d \Omega
$$

you would type this:
\$\$
\langle \psi_1\vert \psi_2 \rangle = \int_\{-\infty\}へへinfty \{
Y_l^m(\backslash theta_1, \phi_1) Y_1^m(\backslash theta_2, \phi_2)
\over \sqrt\{2\pi\} \}
, d\Omega
\$\$
(In LaTEX you use $\backslash[$ and $\backslash]$ instead of $\$ \$$)

Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \vec{D} & =\frac{\rho}{\epsilon} \\
\nabla \cdot \vec{B} & =0 \\
\nabla \times \vec{E} & =-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
\nabla \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{J}
\end{aligned}
$$

Maxwell's equations, nicely aligned, are produced by typing:

\$\$

\eqalign\{
\nabla \cdot \vec D \&= \{\rho \over \epsilon\} \cr
\nabla \cdot \vec B $\&=0$ \cr
\nabla \times \vec E \&=

- \{1 \over c\} \{\partial \vec B \over \partial t\} \cr
\nabla \times \vec H $\&=\backslash$ phantom $\{-\}$
\{\partial \vec D \over \partial t\} + \vec J \cr\}
\$\$

Macro Definitions

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is extendable by defining new control words as "macros". For example:

$$
\text { \def } \backslash \text { Sph\#1\{Y_1^m(} \backslash \text { theta_\{\#1\}, \phi_\{\#1\}) \} }
$$

The argument \#1 is replaced with whatever argument you give to the macro. So you can produce

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int_{-\infty}^{\infty} Y_{l}^{m}\left(\theta_{1}, \phi_{1}\right) Y_{l}^{m}\left(\theta_{2}, \phi_{2}\right) d \Omega
$$

by typing:
\$\$

```
\langle \psi_1 \vert \psi_2 \rangle =
    \int_\{-\infty\}^\infty \Sph\{1\} \Sph\{2\} \\, d\Omega
```

\$\$

Large collections of pre-defined macros are called "formats". REVTEX and $\mathrm{T}_{\mathrm{E} X} \mathrm{sis}$ are special formats for physicists.

Figures and Images

Drawings and figures can be included in the document if they are in an
"Encapsulated" PostScript file (ie, an .eps file).

- In Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ you need to use the macro file epsf.tex, like so:

```
\input epsf.tex
    \vdots
\line{\epsfxsize=\hsize\epsfbox{TeX-Process.eps}}
```

- In LaTEX you use the "graphix" style package, like so: e\{graphicx\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
    \vdots
\includegraphics[width=\columnwidth] {LAT96Fig2}
```

JPEG and PNG images can be converted to EPS first. Example:
\$ pngtopnm TeXShopScreen.png | pnmtops -noturn > TeXShopScreen.eps

Citations and References

A utility program called BIBTEX makes it easy to manage citations and references:

1. You collect one or more bibliography files (eg. mylist.bib) containing a list of fields (title, author, journal, etc..) for each work that you might wish to cite. Each item is identified by a unique 'key'. For example:
```
@book{Bevington1969,
    title = {Data Reduction and Error Analysis
                                for the Physical Sciences},
    author = {Philip R. Bevington},
edition = {First},
publisher = {McGraw Hill},
year = {1969}
}
```

2. In your text, when you wish to cite a work, you simply say \cite\{key\}. Each new work gets a new citation number.
3. At the end of the manuscript file you put

$$
\text { \bibliography\{mylist\} }
$$

This names the bibliography file (ie, mylist.bib) and it is also where the list of references will appear.
4. When you run $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, the citations are added to an auxiliary file, myfile.aux. You then run the $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ program, which collects the citations, selects the references from the bibliography file, and outputs the list of references as myfile.bbl.
5. When you run $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ again the list of references (in myfile.bbl) is inserted at the end of your document (where you put the \bibliography).

You only need to run BIBTEX again if you add, delete, or re-arrange references.

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ on Windows - MiKTeX and TeXWorks

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ on Mac - TeXShop

TeXShop File Edit Source Macros Typeset Preview Window Help

* modlab.pdf

%\%\)Specialpackagestouseforgraphicsandsuch:usepackage(graphicx)\%soyoucanincludefigurefiles(seeexamplebelow)\%\%\%\%\%\%EditingHistory:$\%$-EAM06Jun2003Addedyjmpstyleandpagestyle\%\%usepackagé(vimp\}VdeftheAuthor$\{E$.Myers\}deftheVolume\{2\}ldefpageRange(47-52\}ldentheYear\{2003\}IdeftheYear\{2003\}begin\{document\}\setcounter\{page\}47\}Qagestyle:(jimp)Idate\{October12,2014\}\%Titlematerial:\%Usethe\preprintcommandtoplaceyourlocalinstitutionalreport\%numberintheupperrighthandcornerofthetitlepageinpreprintmode.पpreprint(VC-MPL-2003-47\}\%Titleofpapertitite(WritingaLabReport-AWorkingExample)$\%$repeatthelauthor..laffiliationetc.asneeded\%lemail,thanks,thomepage,allapplytothecurrentauthor.lalauthor\{EricMyers\}lemail[\{myers@vassar.edu\}\%homepage[\{http://noether.vassar.edu/~myers\}\%laffiliationcommandappliestoallauthorssincethelastlaffiliation\%command.Thisshouldfollowtheotherinformation(email,homepage)laffiliation(ModernPhysicsLaboratory\IDepartmentofPhysicsandAstronomy\IPoughkeepsie,NewYork12604USAundefined

Vegin\{abstract\}
This document explains how to write a good lab report, while

Writing a Lab Report - A Working Example
Eric Myers*
Modern Physics Laboratory
Department of Physics and Astronomy
College, Poughkepsie, New York 12604
Vassar College, Poughkeepsie, New York
(Dated: October 12, 2014)
This document explains how to write a good lab report, while at the same time providing an example of the right style and layout.

INTRODUCTION

A well written lab report is important for a number of reasons. The lab report is a summary of your efforts and proper credit for your efforts, even if you maduce good results. A lab report also collects together, organizes, and presents in a coherent fashion the disjointed jumble of facts and figures that are (quite properly) recorded in your lab notebook. Your lab report is how you convince your instructor that you understood the goals and methods of the experiment, that you did everything correctly, and that you obtained a valid and accurate result. Learning to write a good lab report will also prepare you to
write a scientific paper for publication, which is how you convince your scientific peers that you understood the goals and methods of your work, that you did everything correctly, and that you obtained a valid and accurate result. If your paper is not well written your results may not be believed and you may not get the recognition you deserve for the work you have done
The goal of this document is to explain how to write a good lab report, both by direct exposition and by serving as an example. As a start, notice how this paper begins with a paragraph which puts the subject in a wider context, and was then followed by a paragraph (the one you
are now reading) which focuses the reader on the specific goals of this work. The first paragraph explains why the subject in general is important, while the subsequent paragraph explains the specific contribution of this paper to that important topic. You don't have to begin your papers this way, but it is a common way to do so, and a good way to get started if you don't have anything better in mind.
The rest of the opening of your paper can provide further background, perhaps a (brief!) historical overview of the subject, or a review of recent results. Reviewing
recent advances is a good way to put your own contribution in context and explain (or at least infer) why your

For longer papers it is common (though not always neeessary) to end the introductory section with a brief map ple, in the paper you are now reading we will begin with a discussion of how (and why) to organize your paper into separate sections. We will then go through those sections in more detail. Finally, we will close with some suggestions on how to typeset your paper using the REVTEX class of ${ }^{2} T_{E X}$ macros or the TEXsis macro package. It should be noted though that an outline paragraph like ate for a longer paper than this I have included it here only as a demonstration of the style.

ORGANIZATION

Scientific papers are easier to read when they are broken up into clearly defined sections. One reason this helps is that people do not always read scientific papers quickly from start to finish, but after that he or she may want to jump from one section to another to focus on particular details or to try to understand how your work or your methods relate to their own work or to the methods hey are familiar with.
How you choose the sections of your paper is up to to you, and depends in part on the type of paper you are
writing (theoretical versus experimental, brief report versus thesis). For a lab report there are some fairly standard sections: introduction, apparatus, method, data, analysis, results, conclusions, and a summary. You can (and should) use variations on this pattern when appropriate. For example, in some experiments the method is directly tied to the apparatus, so you would do better to describe both together in one section. Similarly, dewell, you may want to combine the analysis and results into a single section. Some labs are composed of several

$\mathbf{T}_{\mathbf{E}} \mathbf{X}$ on Linux - $\mathbf{T}_{\mathbf{E}} \mathbf{X}$ Live

- $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is available in all major Linux distributions as "TeX Live" (just the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ engine, no front end, but lots of other tools):

Fedora/Red Hat:
\$ sudo yum install texlive
Ubuntu/Debian:
\$ sudo apt-get install texlive

- Use your favorite editor (emacs, vi, nedit) as the "front-end".
- Use xdvi to view the DVI file, or any PDF viewer for PDF output.
- Or, texworks packages also available on Ubuntu, Debian, and Fedora Linux.

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ for Physicists

- For $L^{2} T_{E} X$ there is a "class" of macros called REVTEX which is used by the American Physical Society to typeset their journals (eg. Physical Review, Physical Review Letters, and Reviews of Modern Physics). Authors are encouraged to submit computer manuscripts using REVTEX.
- For Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ the equivalent is $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ sis (http://www.texsis.org)
- For the Vassar Journal of Modern Physics there is a style file called vjmp.sty for use with $\mathrm{REVTEX}_{\mathrm{E}}$ (see below...)

Modern Physics Laboratory - Physics 201 at Vassar

How I transitioned college students from MS Word to REVT $_{E} X$:

- Pairs of students performed 5 experiments, each 2 weeks long (2×3 hours per week, lab always open)
- Each team turned in a written report for the first 4 labs, alternating role of "first" and "second" author, using Word, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, or whatever they wanted
- Final experiment performed as a team, but each student report written as sole author. Use of REVTeX required.
- REVTeX examples and documentation provided from the start, so each student could transition at their own pace.

See http://www.spy-hill.net/~myers/vassar/201/notes

Resources - TEX Software

- MiKTeX - TeX Engine for Windows (http://www.miktex.org/)
- TeXWorks - simple TeX front end for Mac and Windows (http://www.tug.org/texworks/)
- WinEdt - text editor for Windows and MiKTeX (http://www.winedt.com/)
- TeXShop - TeX front-end for Mac (http://pages.uoregon.edu/koch/texshop/)
- MacTeX.pkg - TeX Live for Mac (required by TeXShop) (http://pages.uoregon.edu/koch/texshop/obtaining.html)
- TeX Live - comprehensive TeX system for Linux (and Windows) (https://www.tug.org/texlive/)

General $\mathbf{T E}_{\mathbf{E}} \mathbf{X}$ Resources

- modlab.zip - example REVTEX paper for Vassar Modern Physics Laboratory (http://www.spy-hill.net/myers/vassar/201/notes)
- REVTeX 4.1 - LaTeX macros used by American Physical Society (https://journals.aps.org/revtex)
- TUG - TEX User's Group (http://www.tug.org/)
- "The $T_{E} X b o o k "$ by Donald Knuth
- "LaTEX: A Document Preparation System" by Leslie Lamport
- "A Gentle Introduction to $T_{E} X$ " by Michael Doob

